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Abstract—Trajectories are measured and compared with computed trajectories of solid particles with a
diameter of 1-2 mm in downward gas flow near a solid cylinder with a diameter, d., of 25 mm. The
Reynolds number based on d. has been varied from 3000-13,000. The particle Reynolds numbers, based
on the relative velocity |uc — |, ranged from 0 to 2000. Of all forces other than gravity, drag is dominant,
although the pressure gradient and added mass forces for Re. > 10,000 have the same order of magnitude.
The Basset force can be neglected. The correlation [3], originally derived by Sridhar and Katz (1995) for
the lift force coeflicient of bubbles, has been found to be appropriate for freely moving solid particles with
shear number less than 0.04. © 1997 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Dispersed two-phase flows passing obstacles have a manifold occurrence in industrial applications,
including the petroleum, food, power and process industries, e.g. in cat-cracking units, engines for
land transport, gas turbine engines. A strong interaction between the carrier fluid that possesses
a non-uniform velocity field and the dispersed phase usually leads to highly non-uniform
distributions that affect heat transfer and pressure drop. In the fine atomization of fuel that occurs
in conventional gas-carburettor based mixing systems, for example, the gas at 30-40 m/s strongly
interacts with small bodies that initially move at about 70 m/s (Knubben 1995). The computation
of particle trajectories is important to enable the prediction of phase distributions. Single particle
trajectories are usually computed in a Lagrangian approach with the aid of a momentum balance
(Meng and van der Geld 1994). Several contributions to this balance can be distinguished. They
are discussed in the following.

Usually the drag force is dominant. The quasi-steady drag, in unsteady flows, is automatically
accounted for if the steady drag coefficient is used together with the instantaneous relative velocity
on which the particle Reynolds number is based (Mei and Klausner 1992; Odar and Hamilton
1964). The standard drag coefficient is well established (Clift er a/. 1978). Inviscid effects are
comparable to drag forces if large bluff bodies are accelerated. An example is the unsteady motion
of large airships in non-uniform flows, another is marine structures in currents. Inviscid theory
yields lift, added mass and pressure gradient forces that for smaller bodies were merely applied
to bubbles at high enough Reynolds number (Hunt ¢z a/. 1994; Sridhar and Katz 1995). These
forces are, however, in common practice also important for particles with a density higher than
the surrounding gas or fluid if relative velocity and acceleration are large (Magnaudet er a/. 1995).
Such a situation occurs in the creation of sprays in some nozzles and in two-phase flows through
a sudden expansion or venturi. In this paper, particle trajectories are studied of spherical solid
particles that have a diameter of 1-2 mm and are injected at large relative velocity in air that is
accelerated in the vicinity of a solid cylinder. Typical particle Reynolds numbers, based on the
relative velocity and the particle diameter, d,, are in the range 300-1700 with excursions to 0 and
2000. The pressure gradient and added mass forces will be shown to have significant contributions
because of the large (relative) accelerations. The size and weight of the particles has been chosen
relatively large to exclude the effect of turbulence as much as possible.
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Some forces on the particles, such as the Basset (or rather: Boussinesq) history force, are often
neglected without a proper justification. In the present study all known forces on particles are
accounted for. The history force accounts for the unsteady (viscous) diffusion of vorticity around
the sphere. Since the particles of this study are rigid, the zero-slip condition has to be satisfied.
This simplifies the more complicated history integral as derived by Michaelides and Feng (1995)
to the well-known Basset one. The turbulence induced particle accelerations are probably negligible
in the Basset term even for small particles (Ahmadi and Goldschmidt 1971). The accelerations that
occur in the Basset integral can not be derived from frame indifference, as shown by Magnaudet
et al. (1995), because of inertia effects (i.e. non-zero relative Reynolds numbers) involved. The
appropriate form of the accelerations as given by Magnaudet er a/. (1995) has been used in this
paper. The expression used for the history force, the usual Basset integral, may not be appropriate
for the prevailing conditions, still, because of the assumptions on which its derivation was based
(Maxey and Riley 1983; Mei and Klausner 1992). For Reynolds numbers increasing above unity,
for example, the Basset—Boussinesq force decreases (Mei ef a/. 1991; Met and Adrian 1992). It will
be examined whether an expression like the Basset integral, taken to be an upper limit, has a
significant contribution or not without trying to assess the validity of the expression involved. This
is the usual approach, see e.g. Liang and Michaelides (1992).

A general expression for the lift force on a sphere in a rotational straining flow does not exist,
even if viscous effects at the sphere surface are neglected. Neglecting these effects, Auton et al.
(1988) in a lucid article showed that in the limit of a weak, slowly varying shear flow the following
expression for the lift force, Fi, is valid:

FL = CL'[)G'VP'(U(‘, — llp) X . [1]

Here u, is the particle velocity, suffice G refers to the gas, p is the mass density, ¥, is the volume
of the particle, e is the vorticity V x ug, and C is discussed below. Only first order effects in the
stress tensor and the vorticity were considered in the derivation of [1], that can be added to the
forces associated with the acceleration of the flow. Cy is the conventional lift coefficient which is
related to the purely rotational lift coefficient, C\,, that accounts for vorticity distortion by

CL=0.5(1 + Can) + Cia. [2]

Here Cay is the added mass coefficient, 0.5 for a sphere. Auton (1987) showed that C. = 0.5 in
weak shear flow (implying a negative value of C\,). For bubbles at finite Reynolds number, the
added-mass coefficient was found to be the same as in creeping flow and in potential flow (Mei
and Klausner 1992). For particles, also the lift was found to be independent of the Reynolds
number, while Cau was found to be independent of the acceleration number (Chang 1992).

An expression for the lift force on a freely moving solid particle in the asymptotic limit of low
particle Reynolds number, Re,, was derived by Saffman, see Leal (1980). It acts in the same
direction as Fi of [1] and is also caused by the vorticity in the flow.t Mei and Klausner (1992)
derived an interpolation formula based on the expression of Saffman and numerical results for finite
particle Reynolds numbers and zero rotation obtained by others. Recently, Mollinger (1995)
measured the fluctuating lift force on a solid sphere in a viscous sublayer and Miyazaki er al.
(1995) computed lift and drag on a sphere in slow shear flow for the time-dependent case. For
particie Reynolds numbers less than 160, a lift was computed in the absence of fluid shear by Kim
et al. (1993), if a second, similar particle is present. The solid sphere was not allowed to rotate
in these predictions. The particle wake structure was observed to be rather complex and the lift
force repelling if the other particle has a distance of the order of several particle diameters. At
Re, > 300, the vortex shedding past a sphere is non-axisymmetrical even in the absence of another
particle (Kim and Pearlstein 1990). The vortices shed probably interact with vortices detached from
another body nearby, e.g. a solid cylinder as present in this study. At large Reynolds numbers,
the wake structure of a spherical particle in flow near a larger body is therefore expected to be

+This is not fully transparent in the expressions usually employed for the Saffman force. However, the homogeneity of the
shear n-V(t-uc) was an essential ingredient in the derivation of Saffman; n and t are the normal and the tangent to the
direction of motion of the particle.
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Figure 1. Schematic of test section and injection system.

that complex that repelling lift forces may occur even in the absence of vorticity in the approaching
flow.

Because of an asymmetric wake, a rotating sphere experiences a significant lift even in the absence
of fluid shear and the absence of other particles, if the particle Reynolds number is high (> + 2000).
This is often named the Magnus effect. If the surface velocity is less than 0.6 times the relative
velocity this lift force for Reynolds numbers close to the critical transition might even act in the
direction opposite to that of other cases (Clift er al. 1978). The particles in the visualisation studies
presented in this paper are injected without spin, and the unforced spin velocity taken up in the
proximity of the cylinder is small. Barkla and Auchterlone (1971) measured lift coefficients of
spinning, solid spheres in quiescent fluids at Reynolds numbers between 1500 and 3000. Values of

C, ranged from 0.04 to 0.1, independent of Re, but depending on the shear number, «:
def
% = 30-dpf|ug — uy|

that ranged from 3 to 10. Sridhar and Katz (1995) measured the lift of bubbles entrained by a vortex
at Reynolds numbers between 20 and 80. The presence of trace impurities caused their bubbles,
with diameters of ca. 0.6 mm, to behave like solid spheres. This is manifested by, e.g. the solid drag
force coefficient which was measured by them to hold for these bubbles. Values of C, ranged from
1.2 to 23, were independent of Re, and were correlatedt by

C.=0.22-907 (3]

for « in the range 0.002-0.1. Extrapolating this correlation to o = 10 about the same C;-values as
measured by Barkla and Auchterlone (1971) are found.

In the present study the expression [1] will be applied to rigid spheres that move at high particle
Reynolds number through flows with finite, non-uniform vorticity generated near a solid cylinder.
The shear number is less than 0.06. This is an order of magnitude below that of other measurements
on solid spheres in the literature, but in the range of the bubble measurements of Sridhar and Katz

tFor ease of reference, Sridhar and Katz (1995) defined the lift coeflicient as 8F1 /(npa-d;-|uc — up|*), which is equivalent
to 8C-2/3.



360 C. W. M. VAN DER GELD

Figure 2. Photograph of the test rig.

(1995), see above. The present measurements may help to assess the dependence of C on « for
rigid spheres. C; is considered as a lumped parameter that accommodates for all physical effects
that may cause lift. By comparison of visualisations with computations of particle trajectories, the
value of C, will be determined. For this, the value of the drag coefficient has to be assessed first,
The unsteady gas flow around the cylinder is modeled with a finite element method in which the
particle motion is assumed not to affect the undisturbed gas flow.

Table 1. Solid sphere drag coefficient correlations used. Re; is the particle
Reynolds number d,:|uc — uy|/ve and w s logio(Re,). Source: Clift es al.

(1978)
Re, range Cp correlation
0.01-20 Cp = 24/Re, (1 + 0.1315-Red™ ~ 0 m)
20-260 Cp = 24/Rep (1 + 0.1935-Rep®™™)
260-1500 logio(Cp) = 1.6435 — 1.1242-w + 0.1558-u-

1500-120,000  logw(Co) = — 2.4571 + 2.5558-w — 0.9295-w? 4 0.1049-w*
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Figure 3. Computed isovelocity contours; values in m/s; uc. = 7.91 m/s.

2. EXPERIMENTAL

To visualize particle trajectories in a vertical downflow of air near a cylinder, a test rig has been
built comprising of a 2.2 kW blower, tubing, flow straighteners and a 60 x 150 mm? rectangular
perspex test section with a height of 100 ¢cm, see figure 1. A flow straightener, designed according
to VDI (1991, Blatt 1} is positioned 150 cm upstream of the test section to reduce secondary flow
due to a bend. The blockage ratio, defined as the percentage of the cross section occupied by the
cylinder, is 14% for a cylinder diameter of 25 mm which according to Cantwell and Coles (1983)
suffices to reduce effects of wall confinement. Endplates are applied to isolate the flow over the
cylinder from the boundary layers on the walls of the test section and to create a two-dimensional
mean flow (Kourta et al. 1987), see figure 2.

Particles are injected ca. 45 mm upstream of the centre of the cylinder in the direction of the
flow. The injection system is a manually operated system, which introduces separate, spherical,
polystyrene particles in the air flow, see figure 1. Air is sucked out of or blown into a glass or steel
capillary with an outer diameter of 3.2 or 1.0 mm. The underpressure inside keeps the particle from
falling until a small valve is gradually opened. To minimize the influence of this capillary on the
gas flow, it is bent straight vertically over a length of 97 mm, see figure 1. The initial velocity of
the particle at injection is about 0.5 m/s.

Velocity profiles have been measured with the aid of a Dantec™ laser—Doppler anemometer, fitted
with a two-channel fiber probe with a 200 mm lense, operated in backscatter mode and powered
by a 3 W argon laser and mounted on a 3-D traversing table. Two velocity components are
measured simultaneously. The measuring volume is 1.1 x 0.5 x 0.5 mm’® (z x x x y, see figure 1).
A counterprocessor with a data rate up to 155 kHz has been used to analyze the signals provided
by oil drop tracers with a diameter of about 2 um.

Velocity profiles upstream and in the vicinity of the cylinder have been measured for gas
velocities ranging from 2.0 to 7.91 m/s. The measurements have been repeated once. At seven
heights above and next to the cylinder axis x- and y-components of the velocity ug of the gas have
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been measured as a function of the y-coodinate. The dependency of these components on the
z-coordinate has been measured upstream of the cylinder at one location only since all particles
have been injected in the centre plane, see figure 1. The velocity profile has been found to be flat
over a distance of 60 mm in y-direction and over a distance of 15 mm in z-direction. making the
problem essentially two-dimensional with uniform approach velocity.

The air flow rate has been measured with a calibrated orifice with the required (VDI, 1991, DIN
1952, p. Lc3) upstream (20 x diuwe) and downstream (6 x dun) straight pipe lengths amply
available. The calibration has been checked on a regular basis with the aid of an Airfow TAS
thermal anemometer. The gas velocities 2.0, 4.0, 6.0 and 7.91 (maximum possible) have been used
in the visualisation studies.

Photographs have been made with 3200 ASA films and a Nikon F70 camera mounted at a fixed
distance from the test section. A stroboscope illuminated the observation area at 400 Hz.

The measuring strategy has been as follows. First, a grid was placed in the plane where the
particles are injected. The camera was focused at a point of the cylinder in this plane. Optical
distortion caused the photographed grid to be non-uniform, which has been taken into account
in the following way. Slides of the grid system have been projected on a large screen and the
distances indicated by the grid have been measured from the screen. A transformation formula
(based on second order polynomials) has been deduced from these measurements. Projected slides
of particle motion have, subsequently, been analyzed in the following way. At each of these slides
the same particle is observed at different locations. These locations have been measured from the
screen and transformed to actual distances to the cylinder with the aid of the transformation
formula. Also the particle diameter has been measured from the photographed contours on the
screen.

The accuracy of the location measurement is 0.3 mm of the projection screen corresponding to
0.04 mm in real distances.

Additionally, 10 trajectories have been measured with a high-speed motion camera at 1000
frames per second. A ‘cold light’ lamp was in this case focused on the observation volume of the
test section. A transparent grid was filmed prior to the actual particle measurements to allow for
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Figure 4. Computed isovorticity contours and part of the computational mesh; uc.. = 7.91 m/s.
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Figure 5. Comparison of measured and computed velocity components in horizontal (y) direction, | mm
upstream of the top of the cylinder. RMS indicates the root-mean-square of the fluctuating component.
U = 7.91 m/s.

the same analysis as described above. The films have been analyzed with an automated motion
analyzer.

Although the measurement frequency is higher, this method has the drawback that it is (even
more) time-consuming since at each frame not only the particle position, but also the position of
the cylinder has to be determined. The results proved to contain essentially the same information
as those obtained with the photocamera.

3. COMPUTATIONAL
3.1. Modeling

In time-dependent simulations, the continuous phase is described in the Eulerian framework
while the dispersed particles are considered from a Lagrangian point of view. The particles are rigid
and spherical with mass density p,. The equation of motion is

d
pp'vp % = FD + FAM + FPG + FBasset + l'TL + Fbuo [4]

where u, is the velocity of the particle and du,/d¢ is the rate of change of the velocity of the body.
The forces on the RHS of [4] represent, respectively, steady drag, added mass, pressure gradient,
Basset history, lift and buoyancy. Most of them have been discussed to some extent in section 1
and the dependencies on the Reynolds and acceleration numbers in particular. Expressions for all
the force contributions are given below.

Fp = Con-dy po (U — u,)- [ug — uy| [3]

where pg and ug represent the mass density and velocity of the air, respectively. The drag coefficient,
Cb, is given in table 1. The particle Reynolds number, Re,, is defined as d,-|us — u,|/vs with v the
kinematic viscosity. Because of the low level of turbulence, Cp does not depend on the turbulent
intensity.
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The added mass force is defined as

Du; du
Fav = pg = vp'CAM'<FI( - T;) [6]
with
D ¢ d ¢
Di—a&t u;'V  and a-at u,V,
see Auton et al. (1988). The pressure gradient force is (Auton et al. 1988):
Dug
FPG = pG‘Vp‘ I)u[( [7]
The Basset history force equals (Magnaudet et a/. 1995):
s oo o [ [dug du 1
Fouser = 3 g\/TC'P(_. ,UG'J <d_t(’_d_[p> ’/_'d‘[ (8]
0 T \/[ — 7

with p denoting dynamic viscosity. The integral has been calculated as the weighed sum of the
relative accelerations in the time interval from ¢ — 30At.oup tO £, Ateomp being 0.1 ms, typically. This
procedure necessitated storage of the past relative accelerations and a convenient extrapolation to
the acceleration at time r. The value 30 has been varied without affecting the final results.

The lift force is given by [1] and has been discussed in section 1. The buoyancy force is
£-Vo (py — ps) with g the gravitational acceleration.

An analytical solution of [4] is impossible, even if the Basset term is neglected, because of the
time dependence of the relative velocities and the accelerations. Computations have, therefore, been
performed numerically.
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Figure 6. LDA measurements of secondary motion in the gas flow approaching the cylinder at 6.1 my/s.
Velocity components in y-direction are shown at a line through the channel centre towards the midpoints
of the shortest walls, measured at a height of 115 mm upstream of the cylinder. See figure 5 for definition
RMS.
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3.2. Numerical

For the calculations the CFD package FIDAP™, release 7.52, is used. The forces are implemented
by means of a special, user-defined subroutine.t The set of ordinary differential equations resulting
from the dispersed phase is solved with an explicit classic second-order Runge-Kutta method. For
time integration, the implicit first-order backward Euler integrator is applied. More details are
given by Engelman (1991).

In the experiments, the air approach velocity, v, ranged from 2.00 to 7.91 m/s. Accordingly,
the channel Reynolds numbers vary between 11,000 and 44,000, so the isothermal flow has a
turbulent nature. The flow is assumed to be incompressible, which is legitimate since gas velocities
are below one third of the Mach number. Equations governing the air flow are those of the standard
k — ¢ model in which the kinetic energy of turbulence, k, is connected to the rate of viscous
dissipation, ¢, and the turbulent viscosity, phum, via

Hiurb = Cy 'pG'kz/C.

Here C, is a constant. Other constants appear] in the dissipative terms of the transport equation
of € (C, and () and in the diffusive terms of the transport equations of ¢ (g,) and that of &k (o).

Each transient simulation requires 50 Mb of memory and 300 time steps to reach pseudo-steady
solutions, and takes approximately 6 computation hours on a Silicon Graphics Power-Challenge
with 14 MIPS R8000 processors (not all used) at 150 MHz. The mesh consists of 3442 elements.

Let RMS denote the root-mean-square of a fluctuating velocity component in a given direction.
The turbulent kinetic energy, &, is the sum of the squares of the RMS-value of each component
(x, ¥, z) and is measured to amount 0.4 m?/s?, or about 1% of u3,. In the numerical simulations,
k at the inlet has been varied over a considerable range, up to 30% of 1%, without affecting the
converged flow solution near the cylinder.

tAvailable on request.
1The constants have the values C, = 1.44; C; = 1.92; C, =0.09, ¢. = 1.30; 61+ = 1.0.
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3.3. The velocity field of the gas

Figure 3 gives an example of a computed gas flow field near the cylinder and figure 4 gives the
corresponding vorticity contours. The latter figure shows where the lift force [1] may be expected
to contribute: merely in the vicinity of the cylinder. It also shows part of the mesh.

Figure 5 shows a comparison of measured and computed velocity components in the y-direction
at 1 mm above the top of the cylinder. The velocity gradients in the x-direction are quite large at
these locations and the LDA observation volume extends to 0.5 mm in the x-direction, causing
an integration of velocities. In addition, the inaccuracy of the positioning of the LDA measuring
volume with respect to the cylinder, estimated to be 0.22 mm, induces some errors. The agreement
between measurements and predictions is, therefore, acceptable. At other locations a similar
agreement between measurements and predictions has been found. At distances from the centre
of the channel, exceeding 50 mm, the computed velocity gradients depend on the type of boundary
condition: no-slip or entrainment. Both conditions have been applied to examine the effect of the
presence of side-walls on fluid motion and particle trajectories. No differences have been found
in the gas velocity gradients nor in the particle trajectories near the cylinder.

3.4. Secondary flows

Turbulent flow in straight ducts of rectangular cross section is characterized by the presence of
secondary flows superimposed upon the primary flow (Naimi and Gessner 1994). In a rectangular
duct with lengths a and b, a > b, the secondary velocity vectors point towards the wall over a
distance of about a — b/2 at the line through the channel centre towards the midpoint of the
shortest wall (length #). The secondary flow at this line has been measured to amount little more
than 1% of ug. , see figure 6, at those places where the particles are injected. It was, therefore,
unnecessary to perform 3-D computations of the gas flow. The gas flow around the cylinder has

Table 2. Specimen of table with experimental data. The other eight tables are available on request. v — a: are polynomial fit coefficients
to find v-locations for x-values; R is the R-value of the fit. x1-x26 are the measured x-positions in mm of the particle. &, is the particle
diameter in mm. x/ is the number of the particle position used as the starting point for computations

ID 62 ID 63 1D 64 1D 65 1D 66 1D 67 1D 68 ID 69 1D 70 ID 71
do 15.194 13.692 14,2698 15.315 15.751 14.462 16.015 15.3845 14.4778 12.6927
a 0.1563 0.1211 0.1154 0.1607 0.1579 0.1265 0.1347 0.136 0.1676 0.0375
a: 00026 338> 10 * 28x 107 14x 10+ 255 %10+ 356 x10* 143 x10* 284 x 10+ 238 x10* 179 x 10 *
a 22 x 10 ¢ 3 x 10 21 x 100 75x10 ¢ 2x 107 x40 316 x 10 22x 10 % 251 x 107 23 10 ¢
R 0.9988 0.9975 0.9937 0.9983 0.9959 0.997 0.9982 0.998 .993 0.9511
xl —43.980 —44.040 —43.406 - 41.51 - 43.87 43.751 - 43.291 ~43.578 44.210 44.613
x2 —42.085 —42.487 —42.318 - 40.76 -42.72 -43.291 -41913 —42.889 - 43.521 —43.930
X3 —40.765 —40.880 —41.396 —39.22 —41.57 - 42.028 —-41.052 —-42.085 --42.602 -42.7117
x4 —39.905 —39.790 -40.306 —37.84 —40.08 —40.765 —39.733 —41.568 —40.937 —41.568
x5 —38.873 - 38.815 -38.701 —35.67 —39.16 —39.217 —38.128 —40.708 -39.217 —40.708
X6 —35.894 —37.498 —36.982 —34.35 -37.96 —37.555 —36.524 —39.733 —37.268 —38.357
x7 —34.350 —35.894 ~35.036 —-32.86 —36.58 —35.551 —34.235 —38.815 —35.608 —36.581
8 —32.749 —34.178 —33.435 —31.44 —3538 —33.492 —32.064 —34.293 —35.036
x9 —-30.922 —32.064 -~ 31.093 —30.07 —3349 —31.264 —29.894 —32.635 —33.092
x10  —28.868 —29.894 —28.982 -28.41 —31.89 —28.868 —27.613 —31.093 —30.750
Xl —26.987 —27.499 —26.702 --26.36 29.95 ~26.531 - 25164 —29.438 —28.411
12 —24.823 —24.994 —24.254 —24.31 —27.90 --24.026 22,662 - 27.670 —-25.734
x13 —22.605 —22.434 —21.639 —-22.38 -21.411 —20.048 -25.677 —23.060
x4 —20.332 —19.765 —18.913 —20.05 - 18.630 - 17.382 —23.628 -20.219
x5 —17.836 —16.929 —16.249 ~17.72 —15.852 — 14.606 —21.468 ~ 17138
N6 —15.229 —13.927 - 13.078 —15.34 —12.909 —11.439 —19.140 < 14.323
N17  —12.456 —10.987 —10.139 —12.74 ~9.687 —8.389 —23.060 —16.645 —10.76!
x18 —9.575 —7.769 —6.754 —10.03 — 6303 —4.950 - 20.900 14.040 - 7.317
x19 —6.472 — 4218 — 3.486 — 7.092 . - 2.811 - 1.574 - 18.630 —11.269 - 371
x20 - 3.261 — 0.562 0.1685 — 4.049 — 6.246 0.843 2.078 16.192 8.446 -~ 0.843
21 0 3.1996 3.9285 — 1.012 — 2811 —13.644 — 5.345 2134
x22 3.648 2.6947 0.730 —10.987 —1.742
x23 — 8.107 1.68S
x24 — 5119
¥25 - 1.799
x26 1.460
dy 2.361 2.361 2,192 2.024 2.024 2.136 2136 2.305 2.024 2.361
uG 79 7.91 791 7.91 7.91 7.91 791 7.91 7.91 791
Xt 10 6 9 10 11 7 b 9 12 7
Xo —28.868 —37.498 —31.093 —28.41 —129.95 —35.551 - 32.064 - 36.467 —27.670 —36.581
Yo 7.556 11.900 12.757 11.708 12.772 12.802 12.996 13.135 11.657 12.590
to 0.7524 0.6865 0.8445 0.8206 0.8212 0.8235 0.8678 0.5036 0.7975 0.6180

ro 0.0467 0.01584 0.0036 0.0545 0.0505 0.00784 0.0552 0.00804 00317 —24x10 ¢
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Figure 8. Close-up of the trajectories of figure 7.

been modeled 2-D, and the measured secondary velocity components have been added to the
computed velocity components in the y-direction, in the procedure to compute the acceleration of
the particles. This adding of the secondary motion to the primary gas flow has been found not
to affect the computed particle trajectories. This is the case because of the presence of velocity
components in the y-direction as large as 50% of ug.. in the vicinity of the cylinder, see figure 5.

It is noted that systematic errors can arise in the measurement of the secondary mean velocities
from an error in the orientation angle of the normal to the anemometer fringe pattern (Melling
and Whitelaw 1976). This experimental difficulty accounts for the slight asymmetry observed in
figure 6. It also accounts for the low resolution near the shortest channel wall. The velocity is there
expected to change sign at distance a — b/2 from the channel centre, as discussed above, but due
to the low resolution this is not discernable in the measurements. The resolution in the x-direction
is much better since the velocity components in this direction are much higher.

3.5. Turbulence and particle motion

The particle relaxation time, 7,, which is the time needed to acquire 63% of the velocity of an
eddy, is large, of the order of 2 s since

T, % ppd2/{18 uo(1 + f(Rey)} [9]

if Cp is written as 24(1 + f(Re,)/Re,, see table 1, and Re, is a Reynolds number averaged over
the trajectory considered. The relaxation time will now be seen to exceed the eddy lifetime, T,
considerably in all cases and also the time needed for the particle to traverse the eddy, 7, in most
cases. Turbulence is, therefore, expected not to affect the motion of the particles. This is confirmed
by computations with FIDAP™ with a simple stochastic model based on the work of Gosman and
Ioannides (Engelman 1991). The particle diffusivity decreases roughly proportional to 1/z,, see
Hunt et al. (1994).

The characteristic eddy length, L. = ¢;*-k*?/e, is about 1 mm indicating that the largest eddies
have about the same size as the particles. The eddy lifetime is usually estimated as L././2k/3 or
0.16 k/e. T.is 1 or 2 ms, typically, which is only one order of magnitude less than the time of flight
of the particle through the observed space but still three orders of magnitude less than z,.
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Figure 9. The acceleration components of the particle of figure 7.

The relative velocity between particle and turbulent eddies, Jus — u,|, is at high gas velocities of
the order of 4 m/s. The time for the particle to traverse an eddy,

T.~ —2-In| | S O
Tp | — wy

is then about 0.04 ms, which 1s much too short for the particle to reach the peak fluid velocity,
implying that the particle enters another eddy way before it has adopted the speed of the last one.
Only at ug = 2 m/s the relative velocity is small enough for the particles to have a significant transit
time as compared to t,.

Near the injection point the values of & and ¢ are, of course, larger than the ones used in the
above estimates for the undisturbed gas flow approaching the cylinder. The measurements show
that turbulent eddies created at the injection capillary affectt the particle motion directly after
injection for wug, < 2 m/s, indeed. This has, however, no effect on the results described below.

4. RESULTS AND ANALYSIS

A typical measurement and computational result for u;, = 7.91 m/s is shown in figure 7. For
the computed trajectory, [1] and C, given by [3] have been used. Since the wake of the cylinder
is essentially transient, only transient gas flow computations are performed. Upstream of the center,
Le. at x < 0, a steady-state solution is obtained. Varying the starting time of the particle injection
in the flow did. therefore, not affect the predicted trajectories in the flow area considered.

To increase the accuracy of the simulation, the initial conditions have been determined from the

+This was overcome, later, by reducing the injection needle diameter to 1.0 mm.
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Figure 10. The variation of the particle Reynolds number and of the shear number, «, for the trajectory
of figure 7.

experiments by first fitting a third-order polynomial through the experimental points, see the solid
line in figure 7. A starting point with x-coordinate x, is selected out of the set of experimentally
observed locations satisfying the requirements that path oscillations are minimal and that the fitting
curve is nearly parallel to the x-axis. The next observed particle location is reached after time
At = 1/t4ee, twon eing the frequency of the stroboscope. At this time, the fitting procedure yields
the displacements Ax and Ay. The program FIDAP™ yields the initial acceleration, a,, which is
used to estimate the initial velocity component in x-direction, 0 via:

u0 = AA—); —layp-At.

The initial velocity component in y-direction, v0, follows similarly. Table 2 summarizes some
typical results of this procedure. The initial velocity component, thus established, yield quite good
agreement between measured and computed trajectories, see also figure 8.

The histories of the individual acceleration components on the particle of figure 7 are shown
in figure 9. In the x-direction, gravity (not shown since it is a constant) and drag dominate and



370 C. W. M. VAN DER GELD

are of almost equal importance. In the y-direction, the drag and pressure gradient forces dominate,
although the added mass force is quite significant. The reason for the importance of the added mass
has been explained in section 1 and is essentially the way the experiment has been set up. Near
the cylinder, the air velocity increases to more than 150% of its approach-value and alters direction,
see figures 3 and 5, whereas the fairly large, heavy particle can not respond to the flow changes
as quickly. In addition, the particle is injected at zero speed, while the transit time (~60 ms) is
much less than the average relaxation time (=x2s, see section 3.5). This creates high relative
velocities, high particle Reynolds numbers, see figure 10, and high relative accelerations.

The effect of the individual force contributions on particle trajectory computations is illustrated
in figure 11; the effect of C. will be discussed below. At the height of the cylinder axis, at x = 0,
the inclusion of only drag and gravity yields a predicted y-location that differs 0.5 mm with the
y-location predicted if all other, ‘extra’, forces are included as well. The difference is even larger
if the two trajectories are compared that correspond to all forces except lift and to all forces
including lift. Since the measurement accuracy is 0.04 mm, see section 2, the extra forces can not
be neglected. Figure 11 shows that even the neglection of only the added mass or only the pressure
gradient force leads to detectable differences, in accordance with the above conclusions of figure
9.

As figure 9 shows, the accelerations induced in the y-direction by the extra forces except the
Basset force are large enough to justify the fitting of force coefficients. The added mass coeflicient,
Cawm, can not be adapted since

—this would lead to unacceptable discrepancies between measured and predicted particle
positions upstream of the cylinder. See also figure 9.
—the value 0.5 is a well-established added mass coefficient for spheres, see section 1.

0.02

0.018

0.016

Y [m]

0.014f
0012_ ............ ............

0.01h i

-12 3
x10

X [m]

Figure 11. Compurison of computated trajectories for the particle of figure 7. (1) Gravity + drag: (2)
gravity + drag + pressure gradient; (3) gravity + drag + pressure gradient + added mass: (4) all forces,
Ci = 0.5; (5) all forces, (1 given by [3].
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Figure 12. Comparison of predicted and measured histories of x-locations to examine the drag force
coefficient for the trajectory of figure 7. The calculation has been performed with the values of table 1.

The following procedure has been applied to the 20 experiments with ug., = 7.91 m/s in order to
fit Cp and C.

(i) A trajectory is computed with the Cp as given in table 1 and C. = 0.5 as given below [2].
(i) The measured and predicted x-locations are plotted as a function of time, see the example
of figure 12, and the deviation, DEV,, as defined by

def 1 M . .
DEVv = A_J Z Ixcomputed(l) - -xmeasured(l)l2

is computed. Here / numbers the experimentally observed particle locations and M is a
natural number.
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(iii) Cp is varied and steps (i) and (ii) are repeated until DEV, is less than a set-value.

(iv) Cy is varied until DEV, is less than a set-value; DEV, is defined similarly as DEV,. Only
the experimental locations near the cylinder have been used to determine DEV,, since only
at these locations the vorticity is significant, see figure 3. Differences between measured and
predicted y-locations turn out to be less than the measurement accuracy (0.04 mm).

Because of the minor contribution of the lift force to the acceleration in the x-direction, see the
example of figure 9, repeating of steps (iii) and (iv) turned out not to be necessary. The program
MATLAB™ has been used to facilitate the above fitting procedure. The accuracy of the fitting
procedure is not merely the standard deviation of differences between the measured and predicted
trajectories of a single particle, but is better since twenty trajectories of identical particles are
analyzed.

The results of the fitting procedure are the following. It is unnecessary to adapt the drag
coefficient. The comparison of measured and predicted particle trajectories for ug, = 6 m/s yields
the same result. The drag coefficient correlations of table 1 are, therefore, found to be appropriate,
as expected. In addition it is concluded that the relative velocity is determined quite accurately.
The fitting procedure for uc.. = 7.91 m/s yields C\-values of about 5 if no x-dependence is assumed.
Upstream of the center of the cylinder, i.e. for x <0, « is less than 0.04, and the correlation of
Sridhar and Katz (1995), [3] yields good agreement between measured and predicted trajectories.
Further downstream, « is higher, see figure 10, and the correlation [3] yields too low a value for
C. if predictions and measurements are compared. This is further discussed below.

To measure the spin velocity, some of the 2 mm particles have been marked with two concentric
rings of a dye in such a way that the particle orientation is clear, whatever the viewing angle is,
as long as it does not rotate around the center axis of the two rings. Ten of such measurements
showed that the particles did not rotate before coming near the cylinder, i.e. at x < —0.5 d.. In
the vicinity of the cylinder, some weak rotation is visible, although never a full rotation cycle was
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Figure 13. The acceleration components of a particle with o, = 2.160 mm for u,. = 2 ny/s and ¢, = 25 mm.

C is given by [3].
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Figure 14. The variation of the particle Reynolds number and the shear number, «, for the trajectory of
figure 13.

reached during the time-of-flight. This shows that the zero-rotation assumption of Kim et al. (1993)
and the zero-shear-stress hypothesis of Auton (1987) are not fulfilled, and that deviations from
C. = 0.5 are to be expected.

Let the Reynolds number Re. be based on d., the cylinder diameter, and on wug.. For Re,
exceeding 10* and for particle Reynolds numbers, Re,, in the range 1500 to 2000 the measurements
differ systematically from the predictions in the part downstream of the cylinder axis, i.e. for x > 0.
The particle moves further away from the cylinder than predicted with the aid of all known force
components and Cy given by [3]. This is shown in figure 8 for the gas velocity 7.91 m/s but is also
discernable in the results for 6.0 m/s. Tuning of Cp and Cay is out of the question for reasons
explained above. If C, is used as a lumped parameter that accounts for all physical phenomena
causing lift on a particle moving in the vicinity of a cylinder, it would have to exceed the values
given by the correlation of [3] for « > 0.04 in order to give good agreement between measured and
predicted trajectories. It is, however, possible that this additional lift at x > 0 is due to the cylinder
affecting the wake of the particle, see section 1 and the computations of, e.g. Kim er al. (1993).
Since this is another physical phenomenon, it should preferably not be accounted for in the
Ci-expression [1] that was derived for freely moving particles. Another expression, possibly with
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a dependency on the separation distance, would have to be derived instead. This is beyond the scope
of the present study.

The correlation [3] of Sridhar and Katz (1995) gives good results for the relatively large part
of the trajectory where the particle moves freely. The present measurements, therefore, substantiate
the validity of [3] for freely moving, rigid particles with a < 0.04.

Comparison of the trajectories for us.. = 8.0 m/s with the 23 experiments at ug. = 6.0 m/s shows
that the lower the gas velocity, the less curved the trajectory. At us, = 2 m/s, the measurements
and predictions are in very good agreement and both show a straight particle trajectory. This is
easily understood if the acceleration components are compared with those due to gravity, see figure
13. They are less by an order of magnitude, at least. The drag force is the largest, but is small
because of the low particle Reynolds numbers, see figure 14.

The ‘extra’ forces, other than gravity and drag, all have the same order of magnitude. This seems
interesting because of the importance of the Basset history force relative to the other ‘extra” forces.
However, almost the same particle trajectory has been computed after omitting the Basset force
while retaining all the other forces. For all Re.-cases considered, the Basset force can, therefore,
be omitted without affecting the results.

It is obvious that higher gas accelerations and higher Re,-values are needed for the assessment
of the extra forces. For this reason the 38 experiments at u;, = 2 and 4 m/s have not been used
to fit force coefficients. Good agreement between measurement and predictions has been obtained
for these cases, with Cp as given by table 1 and C, given by [3].

5. CONCLUSIONS

Trajectories have been measured and computed of rigid spheres with a diameter of 1-2 mm in
downward gas flow near a solid cylinder with a diameter, d., of 25 mm. The Reynolds number based
on d. has been varied from 3000 to 13,000 which is in the subcritical regime. A two-dimensional
flow situation has been created with particles injected at a point ca. 45 mm above the cylinder centre
and at ca. d./2 distance to the vertical through it. The particle Reynolds number, Re,, based on
the relative velocity |ug — u,|, ranges from 0 to 2000 and varies on a trajectory. The shear number,
o =0.5 d,yw/|ug — u,|, was less than 0.06 which is less by an order of magnitude than other solid
sphere measurements of the literature. Comparison of measurements and predictions shows that

(i) Although the gravitational and drag forces are dominant, the pressure gradient and added
mass forces have the same order of magnitude as the drag force near the cylinders and can
not be neglected. At us, > 5 m/s they even possess the same order of magnitude in the
vicinity of the cylinder.

(if) If an expression like the classical Basset history force is retained, it does not contribute when
the other forces are significant. Although at a gas velocity of 2 m/s the history force has
the same order of magnitude as the added mass force, it can safely be neglected even in this
case, as long as gravity is active.

(ii1) The correlation [3] that Sridhar and Katz (1995) found for the lift coefficient, C., for free
bubbles works well for solid particles in the part of the trajectory upstream of the cylinder
axis, i.e. for x < 0. In this region, the particle motion does not seem to be affected by the
presence of the cylinder. For x > 0, €\ should be higher if the observed repelling action of
the cylinder should be accounted for. In this region, the wake structure of the particle might
be affected by the presence of the cylinder.

(iv) Because of the importance of the pressure gradient and added mass forces, the numerical
modeling is only accurate if nonlinear interpolation methods in the elements are used and
if the mesh elements are sufficiently small.
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